O Data Warehouse (DW) é uma tecnologia que pode ser implementada em sistemas de banco de dados tradicionais e é atualmente o grande alicerce da solução de Business Intelligence (BI). Mas, para a adequada estruturação e desempenho, o DW deverá ser modelado seguindo os preceitos da modelagem multidimensional.
A modelagem multidimensional, ou dimensional como às vezes é chamada, é a técnica de modelagem de banco de dados para o auxílio às consultas do Data Warehouse nas mais diferentes perspectivas.
A visão multidimensional permite o uso mais intuitivo para o processamento analítico pelas ferramentas OLAP (On-line Analytical Processing).
O OLAP possui um conjunto de técnicas para o tratamento dos dados contidos na visão multidimensional do Data Warehouse. As ferramentas OLAP podem ser de diferentes tipos: MOLAP, ROLAP ou HOLAP.
O OLAP multidimensional (MOLAP) é o tipo de ferramenta que utiliza estrutura de banco de dados multidimensional.
O OLAP relacional (ROLAP) utiliza a arquitetura relacional dos dados, onde o banco de dados possui a estrutura tradicional.
O OLAP híbrido (HOLAP) é a junção das duas anteriores, utilizando os melhores aspectos e recursos de cada um dos dois tipos.
Toda modelagem dimensional possuem dois elementos imprescindíveis:
Tabelas Fatos
Tabelas Dimensões.
Ambas são obrigatórias e possuem característica complementares dentro de um Data Warehouse.
- As Dimensões são os descritores dos dados oriundos da Fato. Possui o caráter qualitativo da informação e relacionamento de “um para muitos” com a tabela Fato. É a Dimensão que permite a visualização das informações por diversos aspectos e perspectivas.
- As Fatos contém as métricas. Possui o caráter quantitativo das informações descritivas armazenadas
nas Dimensões. É onde estão armazenadas as ocorrências do negócio e possui
relacionamento de “muitos para um” com as tabelas periféricas (Dimensão).
A modelagem dimensional possui dois modelos: o modelo
estrela (star schema) e o modelo
floco de neve (snow flake). Cada um com aplicabilidade diferente a depender
da especificidade do problema. As Dimensões do modelo estrela são
desnormalizados, ao contrário do snow flake, que parcialmente possui
normalização.
A estrutura relacional diferencia-se da estrutura multidimensional
principalmente devido a normalização, pouca redundância e a frequência de
atualizações suportadas. A estrutura multidimensional possui, normalmente,
desnormalização de tabelas, alta redundância e suporta periodicidade de
atualizações de dados muito menor do que uma estrutura relacional convencional.
É de grande importância uma boa modelagem multidimensional para permitir bom desempenho, intuitividade e escalabilidade em um DW, que é o grande suporte da solução de BI. A cautela e empenho no planejamento e elaboração da modelagem poderá garantir, a médio e longo prazo, um armazém de dados de qualidade com insights valiosos para toda a organização no uso do BI.